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Abstract: Peatlands are ecosystems of great relevance, because they have an important number of
ecological functions that provide many services to mankind. However, studies focusing on plant
diversity, addressed from the remote sensing perspective, are still scarce in these environments.
In the present study, predictions of vascular plant richness and diversity were performed in three
anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER,
and MSI. Also, we compared the suitability of these sensors using two modeling methods: random
forest (RF) and the generalized linear model (GLM). As predictors for the empirical models, we
used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated
using recursive feature elimination (RFE). Fourteen out of the 17 predictors chosen by RFE were
textural metrics, demonstrating the importance of the spatial context to predict species richness
and diversity. Non-significant differences were found between the algorithms; however, the GLM
models often showed slightly better results than the RF. Predictions obtained by the different satellite
sensors did not show significant differences; nevertheless, the best models were obtained with ASTER
(richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and
GLM respectively), followed by OLI and MSI. Diversity obtained higher accuracies than richness;
nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite
data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

Keywords: fen; wetland; richness; Shannon index; OLI; ASTER; MSI; random forest; generalized
linear models; Sphagnum

1. Introduction

Peatlands are wetland ecosystems of great relevance, because they store large amounts of
carbon [1], regulate the storage and purification of water [2], and are a habitat for particular species [3].
Anthropogenic peatlands emerge when native forests are cut in poorly drained sites, which trigger
vegetation succession processes with high moss abundance (from the genus Sphagum [4]). This moss is
currently harvested due to its value as a substrate for horticultural purposes. In this sense, the study
of vegetation structure is key to preserving the functions and services that these peatland ecosystems
provide to humans [5].
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Remote sensing is a useful tool for establishing appropriate conservation and management
strategies [6], allowing the characterization of spatio-temporal dynamics of vegetation, and favoring
the acquisition of information on a large scale (particularly in areas of limited access, where field
sampling is difficult) [7]. There are numerous studies that describe different techniques for monitoring
wetland vegetation, which have used active sensors such as RADAR (radio detection and ranging) [8]
or LiDAR (light detection and ranging) [9], passive sensors like multispectral [10] or hyperspectral [11],
or data fusion [12,13]. A detailed review of this subject was presented by Adam et al. [14].

Among optical data, free satellite data are particularly important for applications in which there
is no clear economic interest. The Landsat Legacy Project is the leading satellite family in the study of
vegetation, mainly because it has a very long record (since 1972), providing several applications in
the field of plant diversity [15]. The ASTER sensor is another alternative that has been used to study
vegetation and its diversity [16]; it has been used less frequently, even though it has been in orbit since
1999 (probably because its products were only made freely available in 2016, and it does not have
full coverage of the world in each orbit). In 2015 the Sentinel 2A mission was launched, designed
especially for the study of vegetation; however, because of its recent launching, it has not been used
much. We found only two studies applied on diversity, one to identify dominant species in forests [17]
and the second to detect and discriminating between grass species C3 and C4 [18].

Despite the efforts of the remote sensing community in recent decades, studies in peatland
ecosystems are still scarce. Cabezas et al. [19] presented the only effort to predict species richness in
peatland to date using Landsat 8 imagery. Plant richness has been used in several remote sensing
studies as a proxy for «-diversity [19-21], which will be referred to as “diversity” in this paper.
However, Adam et al. [14] argue that understanding the relationship between reflectance, species
richness, and species covers is relevant to the ecosystem functioning, which suggests that species
richness may not be the best indicator of diversity. A way to include the relative abundance of species
is using the Shannon index [22], which has already shown good results in remote sensing studies that
predict plant diversity [23-25]; nevertheless, it has never been mapped in peatlands.

The estimation of plant richness and diversity involves characteristics and challenges that need
to be considered. Rocchini et al. [26] state that one potential field for refinements is in the model
building process, where most of the earlier studies focusing on the estimation of these predictors
from remote sensing data often followed simple univariate regression approaches [27] or multiple
regression models [28]. Other studies use more complex models, such as partial least squares [29],
structural equation modeling [20], generalized additive models [30], and machine learning models
(like neural networks [31] or random forest (RF) [19], among others). It has been proposed that direct
application of vegetation indices and simple regression models are not capable of taking full advantage
of the information derived from remote sensing data [32], for which using non-linear and machine
learning models have been implemented, mostly in the last decade [26]. It is commonly thought
that non-linear and machine learning models perform better than linear models in any type of study.
However, Lopatin et al. [33] demonstrated that this is not necessarily true when predicting species
richness. They carried out a comparative study, demonstrating that generalized linear models (GLM)
performed better than RF in a complex forest in central Chile, using LiDAR data, given that RF was
not able to cope with the asymmetry characteristic of count data (i.e., the number of species), which
are discrete and limited to positive values. Therefore, it is necessary to verify if this result can be
generalized, or if it was related to the local characteristics of the study.

The aims of this study were: (1) to predict vascular plant richness and diversity in anthropogenic
peatlands; (2) to compare RF and GLM algorithms; and (3) to compare free satellite data
from the sensors OLI, ASTER, and MSI on board satellite platforms Landsat 8, Terra, and
Sentinel 2A, respectively.
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2. Materials and Methods

2.1. Study Area

The study area is located in northern Chiloé Island, commune of Ancud, Los Lagos Region, Chile
(41°52'40”S, 73°40'00”W) (Figure 1). It specifically corresponds to three anthropogenic peatlands,
whose origins are in the logging and/or burning of native forest (which results in bare soil with poor
drainage areas, generating flooding conditions that allow the colonization and settlement of Sphagnum
moss species [34]).
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Figure 1. Location of the study sites in the north of Chiloé Island in southern Chile. Polygons represent
the peatlands P1, P2 and P3. White squares represent the location of the sampling plots.

The climate is temperate with oceanic influence, with a dry period in summer. Annual
precipitation is about 2100 mm, with mean annual temperatures of ~10 °C.

The three study peatlands are located at the Senda Darwin Biological Station (P2) and its
surroundings (Figure 1), whose extensions are 10.5, 5.6, and 6.2 ha for P1, P2, and P3, respectively.
Currently, the three peatlands do not present significant human pressure, allowing the successional
development of vascular plants over the Sphagnum layer.

The three peatlands have the same dominant species, which are Baccharis patagonica,
Gaultheria mucronata, Myrteola numularia, and Sticherus cryptocarpus (a full description of species
composition and abundance is presented in Table S1). In addition, there is an important area dominated
by reed species (Juncus procerus, Juncus planifolius, and Juncus stipulatus) and several species of ferns,
dominated by the genus Blechnum (B. chilensis and B. penna-marina, among others). In spite of the
species shared between peatlands, these can be differentiated in their horizontal structure, since their
spatial arrangement and mean cover vary from one another. Peatland P1 has a structure dominated by
open scrubs, allowing the establishment of numerous herbaceous species (most of them Gramineae)
over Sphagnum, and reed species in flooded areas. Peatland P2 is dominated by dense shrubs, with
a lesser number of herbs species. Reeds are still present in flooded areas where Sphagnum remains
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exposed. Peatland P3 has a matrix dominated by dense scrubs, with the same species mentioned for P2
but with the presence of Philesia magellanica (in addition to the presence of tree species), foregrounding
the presence of the endangered Pilgerodendron uviferum.

2.2. Ground Data

A systematic sampling of vascular plant richness (expressed as the number of species in a given
area or a given sample) was conducted to adequately represent the variability of the ecosystem, due
to the high spatial heterogeneity of peatlands [35]. For this task, sampling points were located in a
regular grid of 60 m in each peatland, to adjust the sampling points with the spatial resolution of
Landsat 8 (30 m). This implied that 15 sampling points were located in each peatland, obtaining a
total of 45 observations. Each plot consists in square plots of 2 m x 2 m, where the species occurrence
and cover were registered [36]. The vegetation assessments were conducted in two field campaigns:
during January 2014 for P2, and during January 2016 for P1 and P3 (Figure 1).

Finally, we obtained for each plot the species richness (species count) and diversity, which we
estimated using the Shannon index [22]. This index is one of the most popular plant diversity indexes
used in ecological studies [25], and can be calculated as H' = — ) P; x log(P;), where P; is the relative
proportion of species i. Foody and Cutler [31] point out the superiority of that index over the richness,
to reflect the structural variability of a landscape (since it allows a better representation of the dominant
composition, and hence the dominant structure of a plant community).

2.3. Remote Sensing Predictors

Models were built with free available satellite data from three sensors: Operational Land Imager
(OLI), Advanced Spaceborne Thermal Emission and Reflection (ASTER), and Multi Spectral Instrument
(MSI). Acquisition dates of scenes were defined according to the field campaigns date. For OLI, the
dates were 24 December 2013, and 6 January 2016. Surface reflectance at 30 m spatial resolution was
obtained from The Climate Data Record (CDR). ASTER scenes were obtained on 23 September 2013
and 31 January 2016. Surface reflectance at 15 m spatial resolution was obtained from the ASTER
7XT products. MSI data were obtained only for 5 January 2016, because it has only been operational
since mid-2015). Top of Atmosphere reflectance at 10 m spatial resolution was obtained for the visible
spectrum and one near infrared band (NIR), and at 20 m resolution in four NIR bands and two
Shortwave Infrared bands (SWIR). Data were acquired from the Level 1C product, and the Dark Object
Subtraction (DOS) atmospheric correction was applied to derive Surface reflectance [37].

Model predictors were obtained from all available bands of the three sensors. From these
reflectance ranges, common vegetation indices (VI) used in wetland studies were computed (see
Table 1). Furthermore, texture predictors were obtained from spectral bands and VI, which were
divided in first and second order predictors, following Mairota et al. [38]. The first order predictors
were the median and the standard deviation of pixels obtained from a 3 x 3 moving window, computed
using focal statistics tools from ArcGIS 10.3 (ESRI, Redlands, CA, USA). The second order predictors
were obtained using the gray-level co-occurrence matrix (GLCM) [39], namely the mean, variance,
homogeneity, contrast, correlation, second moment, entropy, and dissimilarity. A 3 x 3 moving
window was considered, using ENVI 5.1 (Exelis Visual Information Solutions, Boulder, CO, USA).

Finally, three sets of predictors were obtained, with a total of 148, 360, and 724 predictors for the
OLIL ASTER, and MSI models, respectively. Reflectance values at the plot locations were obtained by
bilinear interpolation [19].
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Table 1. Spectral predictors obtained from OLI, ASTER, and MSI satellite products.

Predictors Reference or Equation OLI ASTER MSI

Bands

Blue B X X

Green G X X X

Red R X X X

Near Infrared NIR X X X

Short Wave Infrared SWIR X X
Index

Transformed Vegetation Index TVI = %{ﬁflg +05 X X X

All Normalized Difference Index NDI = % X X x 1

TCT = Greeanness,

Tasseled Cap Transformation Brightness, and Wetness [40] X X
e o . MSAVT = (UL (NIR-R)
Modified Soil Adjusted Vegetation Index ; NIR+R+L X X
withL =0.5
Difference Vegetation Index DVI=NIR—-R X X X
Simple Ratio SR=1 X X X
Modified Simple Ratio MSR = (% — 1> / (% + 1) X X X
Renormalized Difference Vegetation Index RDVI = NI\ﬁRf +R R X
Enhanced Vegetation Index EVI=G-: % X X
Soil Adjusted Vegetation Index SAVI = 1.5~% X X X

3BSI_W = :727< 4, b, and
c are spectral bands
3BSI_T=*1t"—<qgbandc

Three-Band Vegetation Index Tian atote X
are spectral bands

Three-Band Index Wang

! This index was calculated with selected NIR and Red bands to avoid overload with too many predictors.

2.4. Statistical Models

Species richness was modeled using two approaches: random forest (RF), and generalized linear

models (GLM).

According to Lopatin et al. [33], the processing of data using GLM can be subdivided into

three steps:

1.

Identify the proper model family to deal with the statistical properties of the observed variables.
To predict species richness, we compared the normalized quantile-plots of the residuals of several
GLMs, using the model families which are generally recommended for count data: Poisson,
Quasi-Poisson, and negative binomial. All models tested were set with log-link functions.
To predict the diversity, we tested model families (recommended for continuous positive data)
as Gamma with inverse, identity, and log-link functions. Likewise, we tested less adequate
Gaussian error distribution with log-link function. In all cases we tested the models using the
best (only one) predictor, ranked by recursive feature elimination (RFE; see below). By the shape
of the normalized quantile-plots of the residuals, we selected the Poisson error distribution with
a log-link function for the species richness models, while the Gaussian error distribution with
log-link function was selected for the prediction of diversity.

Select the subset of predictors for each model. As GLMs cannot cope with multi-collinearity
among independent predictors, a selection and ranking of the most important predictors was
performed by the recursive feature elimination (RFE) algorithm [41]. This algorithm operates
based in an iterative procedure, in which one predictor at a time is eliminated and ranked by its
importance. We used random forest as the kernel. RFE was implemented using a leave-one-out
cross validation procedure to acquire the RMSE and the number and importance of predictors.
Models were selected based on a tradeoff between a low RMSE and a low number of predictors.
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In addition, we followed the recommendations of Hair et al. [42], who state that the number of
observations should not be less than 5 per predictor, and ideally should be between 15 and 20.

3. With the first subset obtained, the correlation between these predictors was assessed using the
Pearson correlation coefficient (1), selecting the pairs of predictors withr > 10.6 | and eliminating,
one by one, the least important predictors according to the RFE ranking. This process was carried
out independently for each sensor model, so the models could be compared.

4.  Select the final model. The final number of predictors were determined by calculating several
models and adding a single predictor in each run (starting with the most important predictor
according to RFE). The best number of predictors was assessed by comparing the Akaike
information criterion (AIC) and deviance [43]. We selected the model using three predictors.

The ensemble regression tree method RF [44] has been reported to be an efficient predictive
approach, especially when the number of observations is comparatively low compared to the number
of predictors [45]. The algorithm requires that two parameters be set: (1) mtry, the number of predictors
performing the data partitioning at each node; and (2) ntree, the total number of trees to be grown in the
model run. The ntree parameter was set to 500, following the recommendations in the literature [46],
while mtry was tuned for each model. All statistical processes were carried using R (packages
randomForest [47] and Caret [48]). Here, we also use the RFE-ranked predictors to find the best set of
predictors. As in the GLM models, we added a single predictor at the time to find the best model per
sensor. The best models were selected by the percentage of explained variance.

To check the statistical assumptions of the models, we applied a Shapiro-Wilk [49] test to the
residuals and the Moran test to assess the spatial auto-correlation [50], discarding those models that
did not pass both tests.

2.5. Model Validation

For validation purposes, we followed the recommendations of Lopatin et al. [33], where the final
RF and GLM models were embedded in a bootstrap procedure with 500 iterations. In each bootstrap
iteration we drew 45 times, with replacements from the 45 available samples. In this procedure, on
average, 36.8% of the total number of samples (~28 samples) were not drawn, and were used as samples
for the independent validation [46]. The model performances of RF and GLM were compared, based on
differences in the squared Pearson correlation coefficient (R?), normalized root square error (%RMSE),
bias (measured as one minus the slope of a regression, without intercept of the predicted versus
observed values), and a final model selected. We tested for significance differences («x = 0.05) between
algorithms and sensors by applying a one-sided bootstrap test [33]. First, we obtained the median
values of the previous bootstrap accuracies (Rz, %RMSE and bias), described above. Using these
values as a reference, we selected which algorithm performed accurately for each sensor. Second, we
embedded the models in another bootstrap, where in each iteration the R? of the ‘better’ models were
subtracted by the R? of the ‘worst’ model, and the other way around for %RMSE and bias (assuming
that the ‘better’ model will have higher R? and lower errors and bias). From these distributions, a
one-sided test was performed to test if the differences between GLM and RF were larger than zero
(based on 500 bootstrap samples). The same procedure was applied to define significant differences
between sensors (using the best algorithm in each sensor).

2.6. Predictive Species Map

The final step of the procedure consisted in obtaining the richness and diversity maps, which was
done using the best models obtained in each case. The maps were computed based on 500 iterations
from the bootstrap, using the best selected models in each iteration. The predictors used to generate
the models were spatially explicit, allowing the extrapolation (and prediction) of areas that were not
covered by the pixels used to build the models, which correspond to the field samples. With that
procedure 500 predictive maps were obtained, and we report maps of the median values and the
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coefficient of variation (CV, given in %) values for the species richness and diversity, to account for
stability in predictions within each pixel. The predictions were made solely within the limits of the
study of peatlands, to avoid predictions beyond the range of the model.

3. Results

3.1. Model Performance

By applying RFE, we obtained the importance and the optimal number of predictors for each
model. According to Hair et al. [42], and considering the number of the observation in our study
(n = 45), the maximum number of predictors for each model was 3. Table 2 shows the predictors
included in the final models for predicting plant richness and diversity.

Table 2. Predictors selected in the final models. The predictors used in each model are marked with an
x and ordered importance according to recursive feature elimination (RFE). Abbreviations of predictors
are presented in Table 1. The numbers in the subscript correspond to the central wavelength of the
sensor band (see Table S2).

Sensor Predictors Textural Metrics GLM RF

Richness models

NDI [(Pa200 — Pas2)/ (Pa2o0 + Pag2)] Mean X X
OLI NIR Band (P865) X X
NDI [(Pgss — Psg1)/ (Pses + Pse1)] Contrast X
Red Band (P660) Mean X X
ASTER NDI [(P660 — Ps¢0) /(P660 + P560)] Standard deviation X X
NDI [(Pg19 — Peso)/ (P10 + Poso)] Correlation X
SR (Py610/ Pses) Correlation X X
MSI TCT Brightness using NIR Band (Pg4y) X X
SR (Psa2/ Pses) Homogeneity X X
Shannon Index models

OLI NDI [(Pa200 — P1609) / (P2200 + P1609)] Mean X X
NDI [(Pss1 — P1609)/ (Ps61 + P1609)] X
3BSLW Mean X X

ASTER [(Psso — Ps60 +2Ps10) / (Peso + Pse0 — 2Ps10)]
SR (Pss0/ Pg10) Standard deviation X
SR (Pse0/ Ps10) Mean X X
SR (Pi610/ Prs3) Correlation X X
MSI SR (Pg42/ Prap) Homogeneity X
NIR Band (Pgg5) Contrast X X

The validation metrics RZ, %RMSE, and bias, obtained from the 500 bootstrap, showed no
significant differences between GLM and RF for species richness and diversity (Figure 2); but, in
most cases, GLM models showed higher accuracies using fewer predictors, except for species richness
prediction obtained with MSI (Table 2).
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Figure 2. Model accuracies of random forest (RF) (black plots) and generalized linear model (GLM)
(gray plots) in terms of R?, RMSE, and bias for richness (panel A) and diversity (B). Beanplot display
distribution of results for the 500 bootstrap runs. Black horizontal lines represent the median of
the distributions.

Non-significant differences were found between algorithms and sensors; however, higher
accuracies were obtained with ASTER for species richness performed with RF (R? = 0.62 and
%RMSE = 17.2% for the median bootstrap value) and for diversity performed with GLM (R? of 0.71
and %RMSE of 20.2% for the median bootstrap value) (Table 3). OLI obtained a similar performance
for predicting species richness with GLM (R? = 0.59 and %RMSE = 18.3% for the median of bootstrap),
but a slightly lower for predicting diversity with GLM (R? = 0.63 and %RMSE = 22.8% for the
median bootstrap value). MSI obtained similar prediction of species richness with GLM (R? = 0.60
and %RMSE = 18.3% for the median bootstrap value), but inferior prediction of diversity using RF.
Predictions of diversity obtained higher accuracy than species richness in terms of R?, but not in terms
of %RMSE and Bias (Table 3), showing a systematic error in the diversity predictions.

Table 3. Median bootstrap model accuracies per sensor.

R? %RMSE Bias
Sensor
GLM RF GLM RF GLM RF
Richness models

OLI 0.59 0.57 - 18.3 18.5 - 0.02 0.04 -
ASTER 0.60 0.62 - 17.7 17.2 - 0.03 0.03 -

MSI 0.60 0.54 - 18.3 19.1 - 0.03 0.04 -

Shannon index model

OLI 0.63 0.62 - 22.8 21.8 - 0.05 0.04 -

ASTER 0.71 0.68 - 20.2 20.5 - 0.03 0.04 -

MSI 0.52 0.52 - 25.6 25.1 - 0.05 0.05 -
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3.2. Prediction Map
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Predictive maps of richness and the Shannon index, and their corresponding coefficient of
variation, are shown in Figures 3 and 4, respectively. No spatial autocorrelation was found for
the residuals of the models (Moran: I = —0.053, P = 0.68 for species richness and I = —0.051, P = 0.66
for diversity), demonstrating robust spatial predictions. The predictive map of species richness shows
values ranging between 6 and 13 species, distributed evenly along the three peatlands, with most of
the values around 6 and 10 species and maximum values located in the border of the peatlands. The
map of CV represents the stability of the predictions, with maximum values around 14% in a few
pixels, and most of them <9% (Figure 3).

Total richness

S

0 80 160

320 m

P3

~
“

w<¢>e
s

0 80 160

10

CV of total richness (%)

320 m

P3

P2

P1

P2

14

Figure 3. Species richness prediction (left) and coefficient of variation (right) maps using ASTER
sensor data and RF. The Predicted values represent the median of 500 bootstrap runs in each pixel.
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Figure 4. Diversity prediction (left) and coefficient of variation (right) maps using ASTER data and

GLM. Predicted values represent the median of 500 bootstrap runs in each pixel.

The predictive maps of diversity show values ranging between 0.64 and 2.81, with the highest
values in peatland P1, followed by P2 and P3 (Figure 4). The high values correspond to areas where
shrubs are more sparsely distributed and where Sphagnum remains freely exposed, allowing the



Remote Sens. 2017, 9, 681 10 of 15

establishment of numerous herbaceous species. The map of CV shows values <15%, with higher
variability in areas with a high level of the Shannon index (Figure 4).

4. Discussion

4.1. Selected Predictors and Their Ecological Implications

Most selected predictors for modeling plant richness in peatland ecosystems had the influence of
the infrared electromagnetic spectrum, which is a wavelength area often defined as the most relevant
to study the differences in vegetation structures [51,52]. In the NIR region, high levels of reflectance
are present, due to the cellular structure of leaves that reflect a great part of the incident energy, and
by canopy structural traits, such as leaf area and angle [53], that can differentiate between species
compositions or plant strategies [54] related to diversity. Meanwhile, in the SWIR region there is a
low reflection in specific regions of the spectrum, where water molecules within cells absorb most of
the incident energy [55]. The visible spectrum, generally dominated by the absorption of pigments
and canopy structures, usually has less variability among plant species, as compared to infrared
spectrum [55,56].

Regarding the selected predictors, most of them (14 out of 17) were textural predictors derived
from GLCM or standard deviation (Table 2). The spectral heterogeneity has been defined as the
most important factor that explains plant richness [57] and plant diversity [25]. This statement was
based on the spectral variation hypothesis, which states that a higher spectral heterogeneity shows a
positive correlation with species richness [25,58]. Theoretical and empirical studies suggest that the
diversity of a particular site is strongly influenced by and positively correlated with its environmental
heterogeneity [32]. More complex environments can host a greater number of ecological niches, which
in turn can be colonized and inhabited by a larger number of species. In our study, developed at
a local scale, this phenomenon was well captured by the spectral heterogeneity contained in the
textural metrics (derived from spectral information). Nevertheless, recent efforts have proven that this
hypothesis may not hold areas across landscapes with coarser resolution [59].

4.2. Satellite Sensor Comparison

Similar predictions for species richness and diversity were obtained for the three sensors, with
greater discrepancy in diversity predictions (Figure 2). The non-significant differences was likely
related to a similar spatial resolution (ranging from 10 to 30 m), and to the spectral capabilities of sensors
to provide NIR information, which has demonstrated to be relevant in «-diversity studies [52,60].

Considering this, it is expected that MSI should provide the best predictions of richness and
diversity because of its more detailed spectral representation of the NIR region, including 5 bands.
We found something different, which may have been caused by the following factor: the use of
a January 2016 image for representing the field samples of January 2014 in Peatland 2, due to the
lack MSI scenes before 2015. That mismatching between field samples and satellite observations
could be the main reason for the poor performance of MSI. This is supported by Bradley [61], who
mentioned that, ideally, acquisition time should be at the same time as field samples extraction (the
method of atmospheric correction applied to MSI information), since DOS has demonstrated to have
poor performances in several applications (e.g., [62]). In this sense, ASTER and OLI products have
implemented complex and validated atmospheric correction algorithms, which can provide a more
reliable estimation of surface reflectance (the spatial resolution of NIR bands could have played a role
as well, especially in peatlands where the community gradient and soil chemical compositions may
change drastically over distances of a few meters [63]). Here we obtained better predictions with the
ASTER sensor (the one with finer spatial resolution (15 m)) as compared to MSI (20 m) and OLI (30 m),
allowing a better representation of ecosystem variability, in terms of composition and dominance of
species [26]. This is consistent with the results of other studies, where the NIR spectrum region was
selected as the most relevant predictor using a hyperspectral sensor to separate species in a mangrove
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ecosystem, where water and vegetation strongly interact [52]. The use of ASTER sensor in a-diversity
predictions was already been reported by Feilhauer and Schmidtlein [29], who obtained similar results
in a walnut-fruit forest for species richness (RZ =0.51) and diversity (R% = 0.61).

Regarding the textural metrics, Laurin et al. [24] in the Gola Rainforest National Park, obtained
good predictions (R? = 0.84) using these type of metrics to estimate diversity based on hyperspectral
data. Species richness predictions, using textural predictors, were reported by Cabezas et al. [19] in an
anthropogenic peatland divided into two zones with different types of management: productive (with
Sphagnum extraction) and conservation (corresponding to peatland P2 in this study). In summary,
spatial resolution of the scenes seems to be important for the analysis, especially in peatlands.
Rocchini et al. [26] point out that ideally the size of the pixel should be at least the same size as
the sampling unit, especially when spectral heterogeneity is computed to estimate the local diversity
of species, as in this study. Nevertheless, when pixel size has a very small dimension (1-5 m), the
shadows can create a high level of spatial heterogeneity that can lead to producing more noise rather
than adding relevant information [64]. In addition, Rocchini et al. [26] mentioned that coarse spatial
resolutions can affect the representation of actual heterogeneity due to a smoothing process that makes
it difficult to detect patterns that exist at a finer scale. Hence, this trade-off between noises caused by
high resolution and the information loss caused by low resolution must be taken into account.

Nonetheless, in this study the moving window of 3 x 3 pixels was considered to compute the
textural predictors, regardless of the spatial resolution of each sensor. Therefore, the smoothing effect
differs among sensors, and thus could possibly affect the representation of actual heterogeneity of the
ecosystems, consequently underestimating the environmental gradient at low resolutions. However,
on the three-pixel scale considered, similar accuracies were obtained by the different modeling
approaches, which may imply that the spatial difference (10-30 m) does not result in a significant
difference in the acquisition of textural information in such highly heterogeneous environments (where
medium-resolution satellites may only account for general patterns).

4.3. Model Comparisons

The slightly better performance (though not significant) of GLM in species richness modeling
could be due to its ability to handle count data, where the error has a non-symmetrical distribution [33].
In our particular case, the Poisson distribution was the most appropriate to represent the error
distribution, agreeing with other studies [65].

Machine-learning methods such as RF are popular among modelers because they are described
as non-parametric, because it is usually assumed that there are no requirements concerning the
error distribution. Nevertheless, this is not true for RF, which either fits standard linear (Gaussian)
regressions for tree nodes or is based on measures for node impurity, such as the sum of squared
deviations from the mean [66]. But, it is true that in several cases they have proven to be more
accurate than parametric approaches with easier tuning procedures. Despite these advantages, their
predictions are often difficult to follow, compared to parametric approaches such as GLM [67]. Another
issue with RF is that the application of sub-sampling in the algorithm can result in an increment
of the variance, especially when the number of samples is small [21]. This can turn into a major
problem in the validation process, when the bootstrap method is implemented and sub-samples are
chosen, reducing the input observations used in the model. In spite of these limitations, studies
using RF to predict species richness obtained accurate predictions with similar field samples as the
one used in this study [19,24], and demonstrated to be an important tool for modeling x-diversity.
This study shows that both GLM and RF are valid methods for predicting «-diversity with similar
performance; nonetheless, according to Latifi et al. [21] and Lopatin et al. [33], GLM proved to be a
more parsimonious approach, since it was easier to interpret, required less computation time, and
fewer predictors.
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5. Conclusions

Accurate predictions of x-diversity were obtained in anthropogenic peatlands from data of three
medium-resolution sensors (OLI, ASTER, and MSI), using the random forest (RF) and generalized
linear model (GLM) approaches. Predictions of vascular plant richness were obtained with an
acceptable level of accuracy, and similar results were obtained for plant diversity, demonstrating
the capability of sensors to estimate o-diversity.

In spite of the non-significant differences between algorithms and sensors, ASTER was able to
provide the most accurate models for both species richness and diversity, probably due to its spatial
resolution in the NIR band. The comparison between RF and GLM modeling approaches showed
no significant differences either, but slightly better results were often obtained with GLM, which is
easier to understand and provides a more parsimonious prediction with fewer predictors. Most of
the selected predictors were derived from the computation of textural variables. The inclusion of the
spatial context represented by the textural metrics was an important feature in modeling a-diversity.

Free satellite data have proven to be helpful for modeling x-diversity in anthropogenic peatlands,
which are ecosystems of great relevance (both locally and globally).

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/7/681/s1,
Table S1: Species cover by peatland, Table S2: Spectral resolution of sensors. The sensor bands are divided
by spectral range, where NIR is near infrared and SWIR is short wave infrared.
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