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ABSTRACT
Protected areas (PAs) are critically important means to preserve species and maintain natural ecosystems. However, the

potential impacts of chemical pollution on PAs are seldommentioned in the scientific literature. Research on the extent of the
occurrence of chemical pollution inside PAs and in-depth assessments of how chemical contaminants may adversely affect
the maintenance of species abundance, species survival, and ecosystem functions are scarce to nonexistent. We investigated
1) the occurrence of chemical contaminants inside 119 PAs in Latin America from publically available databases, and 2)
reviewed case studies of chemical contaminants and pollution in 4 Latin American PAs. Cases of chemical pollution and
contamination inside Latin American PAsmostly originated from sources such as mining, oil, and gas extraction. To date, the
focus of the research on chemical pollution research inside Latin American PAs has been primarily on the detection of
contamination, typically limited to trace metals. Where management actions have occurred, they have been reactive rather
than proactive. Protected areas established in wetlands are the most affected by chemical pollution. Based on the
information from the pollution and/or contamination occurrence and the case studies analyzed, Latin American PAs are not
well safeguarded from chemical pollution, resulting in both challenges and opportunities to conserve biodiversity and
ecosystems. Integr Environ Assess Manag 2016;00:000–000. © 2016 SETAC
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INTRODUCTION
The historic notion that the goal of protected areas (PAs)

was to protect remote, iconic landscapes, and wildlife has
shifted to a more complex set of conservation, social, and
economic objectives (Watson et al. 2014). The International
Union for the Conservation of Nature (IUCN) defined the
term protected area as “a clearly defined geographical space,
recognized, dedicated and managed, through legal or other
effective means, to achieve the long-term conservation of
nature with associated ecosystem services and cultural values”
(Dudley 2008). Currently, PAs are used worldwide to
conserve biodiversity and ecosystems as the essential building
blocks for nature conservation (Dudley 2008). Several types of
This article includes online-only Supplemental Data.
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PAs have been proposed with one central idea: the protection
of wild biodiversity (Locke and Dearden 2005; Dudley 2008).
Hence, PAs are critically important given the current
biodiversity crisis (V€or€osmarty et al. 2010; Loehle and
Eschenbach 2012), where rates of extinction are approxi-
mately equal to 1000 times higher than background levels
(Pimm et al. 1995). Globally, factors contributing to loss of
biodiversity such as habitat loss (Naughton-Treves et al. 2005),
illegal trading of species (Hilborn et al. 2006), and invasion and
expansion of nonnative species (Simberloff et al. 2013) are in
comparison, well covered in the scientific literature, and hence
considered in the management plans of well-designed PAs to
protect biodiversity (Chape et al. 2005). In contrast, discussion
regarding the impacts of chemical pollution on PAs biodiver-
sity has been virtually absent from the scientific literature (but
see Rodriguez-Jorquera et al. 2015, 2016).

Protected areas have grown exponentially, particularly in
developing economies such as Latin American countries
(Naughton-Treves et al. 2005). Currently, there are approxi-
mately 6309 PAs in Latin America covering 12% of the region
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(Table 1). The humanpopulation in LatinAmerica is projected
to increase from 606 million to 780 million by 2050 (Haub
2013), and the average income is expected to rise; both
relevant factors impacting natural areas in terms of biodiversity
loss (Sanderson et al. 2002), water pollution (Jackson et al.
2001), and land modification (Machovina et al. 2015). For
example, livestock production—the greatest habitat loss driver
(Green et al. 2005)—is anticipated to increase in Latin
America along with energy demand (Heres del Valle 2015).
Table 1. Protected areas and related human pop

Country
Area
(km2)

Nr protected
areas

Country co
(%)

Argentina 2780400 345 5

Bolivia 1 098581 72 19

Brazil 8 515 767 1864 26

Chile 756 096 250 19

Colombia 1141748 639 21

Costa Rica 51 100 186 21

Cuba 109884 274 6

Dominican
Republic

48 442 87 22

Ecuador 283560 126 25

El Salvador 21 040 176 0.83

French Guiana 83534 58 48

Guadeloupe 1628 76 19

Guatemala 108889 259 31

Haiti 27 750 8 0.27

Honduras 112 492 111 18

Martinique 1128 ND ND

Mexico 1972550 1004 11

Nicaragua 130375 95 37

Panama 75517 96 19

Paraguay 406752 44 5

Peru 1285216 200 14

Puerto Rico 9104 59 10

Saint-Barthelme 53 4 ND

Saint-Martin 25 ND ND

Uruguay 176215 25 0.26

Venezuela 916 445 251 54

Total 20114291 6309 19a

ND¼no data.
Protected areas and biodiversity loss data were obtained from World Conserva
aAverage value.
Furthermore, in Latin America, limited funding to maintain
PAs has been identified as a driver of biodiversity loss (Leisher
et al. 2013). All of these factors are expected to intensify
impacts on PAs challenging their current status and manage-
ment goals.
Chemical pollution is well-known to cause adverse effects

on biota such as reproductive impairments (Burgess andMeyer
2008; Crump and Trudeau 2009; Frederick and Jayasena
2011), immune incompetence (Yang et al. 2002; Kenow et al.
ulation metrics across Latin American countries

verage Biodiversity loss
(%) Population

Population
density

(per km2)

15 41660417 14.4

13 10461053 9

11 201032714 23.6

7 17556815 23

14 47387109 41.5

18 4667096 91.3

21 11061886 100.6

25 10219630 210.9

13 15439429 54.4

29 6108590 290.3

29 250109 3

29 405739 250

17 15438384 129

25 9996731 350

10 8555072 76

ND 386486 340

17 118395054 57

14 5788531 44.3

11 3661868 54.2

18 6800284 14.2

5 30475144 23

17 3615086 397

ND 36286 682

ND 9,035 361

31 3324460 18.87

7 31648930 31.59

17a 604381938 3690

tion Monitoring Centre database (UNEP-WCMC 2014).
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2007;Hawley et al. 2009), oxidative stress (Livingstone 2001),
and endocrine disruption (Hotchkiss et al. 2008; Jayasena et al.
2011) potentially leading to species population reductions.
Despite the difficulty in proving pollution effects on free-range
species populations, there are numerous illustrious examples
in the scientific literature. For example, antifouling chemicals
have induced population declines in gastropods due to
sterilization and sex change (Oehlmann et al. 1996). Kidd
et al. (2007) demonstrated the collapse of an entire fish
population exposed to a synthetic estrogen used in a
contraceptive pill. Egg shell thinning effects caused by DDT
have been known for decades (Porter and Wiemeyer 1969),
and later research demonstrated the effects of DDT on raptor
reproduction with population declines observed across Europe
and North America (Vos et al. 2000). Population effects
caused by pollutants on reptiles have also been reported
(Guillette et al. 1999; Willemsen and Hailey 2001; van de
Merwe et al. 2010), as well as reductions on the apparently
more sensitive amphibians (Blaustein and Kiesecker 2002).
Broadly, the decrease in egg hatchability of oviparous species
exposed to pollution has been largely documented (Wolfe et al.
1998; Henny et al. 2002; Karasov et al. 2005; Tyor et al. 2012),
with regional reduction in populations (Vasseur and Cossu-
Leguille 2006). Recently, the effects of pollution on other
biodiversity components such as primary producers (Lepp
1983; Clark et al. 2013) and bacteria have been reported more
frequently (Imfeld and Vuilleumier 2012; Chakraborty and
Bhadury 2015). Furthermore, ecosystem goods and services
may have also been directly hampered by pollution (i.e., water
quality) or indirectly as consequence of biodiversity loss
because the latter is considered to be one of themajor drivers of
ecosystem change (Hooper et al. 2012). In this context, the
issue of pollution inside PAs has a particular place in the
fundamentals of conserving biodiversity.

Our central goal in this review was to answer the question:
How well are Latin American PAs protected from chemical
pollution? The challenges and opportunities to answer this
question were discussed during the symposium “Pollution in
LatinAmerican ProtectedAreas: Challenges andOpportunities in
Protecting Biodiversity and Ecosystems” (Society of Environ-
mental Toxicology and Chemistry [SETAC] Latin America,
Buenos Aires, Argentina, September 2015) organized by
Ignacio A Rodr�ıguez-Jorquera and Gurpal S Toor. Herein, we
investigate the extent to which Latin American PAs may be
affected by chemical pollution.

METHODOLOGY
To answer our question, we reviewed 2 databases, and we

present 4 case studies as representative examples. The 2
reviewed databases were: 1) the World Conservation Moni-
toring Centre database (UNEP-WCMC 2014) to obtain PAs
data in Latin America (Table 1), and 2) the Environmental
Justice Organisations, Liabilities and Trade (EJOLT) database
(Temper et al. 2015) to analyze the occurrence of contamina-
tion inside PAs (Supplemental Data Table S2). From Temper
et al. (2015), we selected all cases categorized either under the
category of “Establishment of reserves/national parks” or
manually selecting cases when the words “Park/Parque,”
“Area,” and “Reserve” were explicitly related to chemical
contamination/pollution. The EJOLT database methodology
gather cases that include at least 3 criteria: 1) economic activity
or legislation that has negative environmental and social
outcomes, 2) claims by environmental justice organizations
and, 3) reporting of that particular conflict in 1 or more media
stories. For more details on the methodology, refer to Temper
et al. (2015). Finally, to exemplify how Latin American
countries deal with chemical pollution issues inside PAs, we
described 4 prominent cases from 4 countries (case studies) to
provide a more detailed description. Prominent case studies
from Mexico, Brazil, Argentina, and Chile (Figure 1) were
selected as they are home to more than half of the people in
Latin America (�380 million, Table 1) and represent 4 of the
most important economies in the region.

RESULTS AND DISCUSSION
Of the 520 cases reported in EJOLT for Latin America, 119

cases occurred inside or directly affect PAs (Table S2). These
cases included the occurrence of chemical pollution and/or
contamination from 16 Latin American countries PAs
(Figure 2). Colombia has the most cases of chemical pollution
and contamination inside PAs, followed by Ecuador (Figure 2).
We divided the sources of chemical pollution into 8 categories
(Figure 3). The main sources of chemical pollution in Latin
American PAs were mining, oil, and gas extraction projects
(Figure 3). There were cases that included several PAs in a
region and transboundary impacts were common in extraction
projects located in marine environments. For instance, an oil
extraction project proposed within the Mesoamerican Reef
System (Sistema Arrecifal Mesoamericano) may affect 14 PAs
inMexico, Belize, Guatemala, andHonduras, which reinforces
the importance of including transboundary monitoring efforts.
Our results included several cases where the pollution source
was either “stopped” or is a “proposed” project. The rationale
behind this was the fact that formost of the sources of chemical
contaminants observed (i.e., mining), legacy contamination is
very likely to occur even after the source had been stopped. For
the cases that are “proposed,” we assumed that a considerable
portion of those cases would become an “ongoing” project in
the short term because they are within the evaluation phase of
the environmental impact.

The potential impacts related to nontraditional extraction
projects such as Li mining (batteries) and Coltan (electronic
devices) extraction are interesting cases, because these sources
of pollution are new types in Latin America with stringent
environmental regulation and new challenges in terms of
chemical pollution types. Puerto Ricowas a rare case because it
had just one reported case of chemical pollution in PAs, which
was related to military activities. The impact of tourism and
aquaculture were reported in several countries inside PAs
(Figure 2).

Here, we review 4 prominent case studies across Latin
America PAs.

CASE STUDY 1

Mexico: Contaminant impacts in Lake Chapala

The Lerma-Chapala watershed has over 10% of Mexico’s
human population and is located within one of the most
chemically contaminated regions in Mexico. Wastewater from
industrial, agricultural, urban, and animal farm sources is
discharged into the Lerma River without treatment (Toledo
et al. 2009). The Lerma River delivers the wastewater directly
into Lake Chapala, which is a major fishery for local
communities and a recreation resource for national tourists.
Lake Chapala was declared a RAMSAR site in 2011, when it
was recognized as one of the most important wetlands in



Figure 1. The 4 case study sites and main affected species in Latin America.

Figure 2. Number of cases of chemical pollution and contamination by
country in Latin American protected areas.

Figure 3. Number of cases by sources of chemical pollution and
contamination in Latin America. Percentage from the total of reported cases
are depicted inside the bars.
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Mexico (http://www.cemda.org.mx/artman2/publish/
biodiversidad_64/). More than 80 species of aquatic birds
have been reported in LakeChapala, which is one of the largest
wintering areas for American white pelicans (Pelecanus
erythrorhynchos).

For several decades, it has been a common belief that Lake
Chapala is highly polluted as consequence of contamination
emanating from the Lerma River, municipal discharges around
the lake, and aerial deposition of contaminants generated by
the city of Guadalajara. Contaminant studies in the lake have
primarily included the occurrence of metals in water, sedi-
ments, and fish; however, there are limited studies of
contaminants in wildlife. Studies conducted in the 1990s
reported elevated concentrations of trace metals (Cr, Ni, and
Cu) in sediments (Hansen and van Afferden 2004, 2012). Ford
et al. (2000) observed seasonal variability in the concentrations
of metals in the water, with increases during the dry season
(likely due to evaporation) and decreases during the rainy
season (likely due to dilution). During the rainy season, there is
also an influx of contaminants from the Lerma River. Elevated
concentrations of Hg in charal fish (Chirostoma sp.) from Lake
Chapala (Ford et al. 2000) pose potential risks to human health
through dietary intake (Jay and Ford 2001). Thus, the focus of
research has generally been on Hg contamination in fish
(Trasande et al. 2010; Stong et al. 2013; Torres et al. 2014), but
the potential impact of Hg contamination in Lake Chapala on
American white pelicans and other aquatic birds has not been
well assessed (Torres et al. 2014).

Deposition of airborne contaminants (including transboun-
dary contamination) has been suspected to occur in Lake
Chapala. The North American Agreement on Environmental
Cooperation was established in 1994 with the purpose of
promoting environmental cooperation among Canada, the
United States, and Mexico (CEC 1997). An Expert Advisory
Panel emphasized the need for collaboration in ecological
research and monitoring of terrestrial and aquatic ecosystems
in the 3 countries. The Panel emphasized that understanding
the problem of transboundary pollution is essential and should
be supported, and the presence of flame retardants in industrial
and commercial products could have a “significant and adverse
effect on the environment and human health” (CEC 2015).
Evidently, research on the potential effects of known
contaminants and the determination of the occurrence of
emerging pollutants is needed in Lake Chapala.

CASE STUDY 2

Brazil: A biosphere reserve threatened by former mining
activities and urban settlements

Canan�eia-Iguape-Peru�ıbe Environmental Protected Area
(APA-CIP), located in the Southeastern Brazil (Figure 1), is
an estuarine lagoon ecosystem recognized by UNESCO as part
of the Biosphere Reserve of the Atlantic Rainforest due to its
international relevance to environmental conservation. Since
2000, the region has been part of the global list of UNESCO
World Heritage Sites, in addition to being a priority area for a
RAMSAR site (Brazil 2012).

The APA-CIP is a sensitive region exposed to contamination
mainly from the Ribeira de Iguape River (Abessa et al. 2014;
Gusso-Choueri et al. 2015, 2016), which flows into the
estuarine lagoon within the PA. The Ribeira de Iguape river
basin was, in the recent past, an important region of mining
activities in Brazil. For decades, until the 1990s, tailings and
metallurgical slags were directly dumped into the river, where
they remain subject to leaching and weathering (Guimar~aes
and S�ıgolo 2008; Abessa et al. 2014). Before mining activities
ceased in 1995, approximately 89 000 m3 of residues were
deposited on the riverbanks, posing environmental risks to the
river and the estuarine-lagoon environment (Abessa et al.
2014; Gusso-Choueri et al. 2015, 2016). Other sources of
contaminants in the APA-CIP include wastewater disposal
from 3 cities with inadequate sanitation infrastructure (Iguape,
Ilha Comprida, and Canan�eia), with a total estimated
population of 51 900 inhabitants (IBGE 2014).

Elevated concentrations of metals (Pb, Zn, Cu, Cr) and
metalloid (As) in thewaters, bottom, and suspended sediments
of the Ribeira de Iguape River have been related to mining
activities at the river headwaters (Guimar~aes and S�ıgolo 2008;
Abessa et al. 2014). In the estuarine lagoon of the APA-CIP, de
Mahiques et al. (2013) assessed the historical record of
150 years of metals input and found that the concentrations of
metals (especially Pb) in sediments increased after the
construction of an artificial navigational channel (the “Valo
Grande” Channel) connecting the Ribeira de Iguape river to
the estuarine lagoon. This study also reported that the most
critical period of metal input occurred between the 1940s and
the 1990s, the period of most intensive mining operations,
with consequent contamination of the estuarine lagoon
sediments (de Mahiques et al. 2013; Cruz et al. 2014;
Tramonte et al. 2015).

The lack of a sanitary infrastructure for the city of Canan�eia
has also contributed to the input of contaminants to APA-CIP
(Cruz et al. 2014; Gusso-Choueri et al. 2015, 2016). The
Metals (Cd, Cu, Fe) and total recoverable oils and greases have
been associated with chronic toxicity to marine copepods
(Nitokra sp.), and Zn has been associated with acute toxicity to
the burrowing amphipod Tiburonella viscana (Cruz et al.
2014). Recent studies focused on the biota have shown
toxicological effects (oxidative stress, neurotoxicity, and
genotoxicity) associated with bioaccumulated metals in
resident catfish (Cathorops spixii) along the APA-CIP. In
some instances, metal and As loads in catfish muscle tissue
exceeded levels safe for human consumption (Gusso-Choueri
et al. 2015, 2016).

The APA-CIP was established as a PA of Sustainable Use,
and the subcategory of “Environmental Protected Area” (in
Portuguese, �Area de ProteSc~ao Ambiental, or, as it is better
known in Brazil, “APA”). APA is the less restrictive category
among all categories in the Brazil National System of Protected
Areas. This subcategory of PA is in general, an extensive area
with some degree of human occupation, which may encom-
pass other PAs, urban ecosystems, agricultural land, and zones
for wildlife protection, with the aim of conciliation of land use
with the maintenance of essential ecological processes. The
APA-CIP is inserted into the extensive network of PAs of the
coastal zone of the State of S~ao Paulo, which together makes a
large ecological corridor, encompassing terrestrial, marine, and
estuarine areas.

Despite the substantial differences in ecosystems processes,
historical perceptions, and regulatory frameworks between
marine and terrestrial environments, marine PAs (including
estuarine PAs) are usually planned, created, and managed
following the same concepts and theories of terrestrial PAs
(Houde 1982). Marine ecosystems are highly dependent on or
influenced by a broader landscape and seascape, not only
because marine organisms can travel long distances to settle,

http://www.cemda.org.mx/artman2/publish/biodiversidad_64/
http://www.cemda.org.mx/artman2/publish/biodiversidad_64/
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spawn, feed, or nurse (Lee 1983), but also because coastal
waters receive inputs from rivers that, in some instances, flow
across large drainage basins, and therefore transport nutrients
and contaminants to coastal ecosystems. Consequently,
contaminants may be introduced into marine PAs from
adjacent areas (Perra et al. 2011), which is an important issue
in the APA-CIP.
The other issue concerning pollution in the APA-CIP

involves the establishment of CIP into the category of APA.
Because this is the least restrictive category, poor public
policies usually aim to stimulate economic development in
these areas through the use of natural resources to the
detriment of environmental conservation (Padua 2001).
Community engagement associated with environmental

enforcement and environmental monitoring are key factors for
a successful management regime in marine PAs (Pomeroy and
Douvere 2008). Unfortunately, conflicts involving local
communities that are unsatisfied with the management plan
of the APA-CIP have long been reported (Diegues 1986) and
effective enforcement is poor due to the few economic
resources destined to PAs. Environmental monitoring in
marine PAs (including the APA-CIP) usually ignores the issue
of chemical pollution, especially effects on the biota. Most
biological assessments carried out in marine PAs only consider
direct or indirect effects of fishing on the biota (Fraschetti et al.
2002). Studies in marine PAs regarding contamination usually
focus on measuring contaminant concentrations in environ-
mental matrices such as water, sediments, and organisms
(Perra et al. 2011), rather than the effects of contaminants on
the biota to be protected (Cruz et al. 2014). In PAs like the
APA-CIP, where contamination is acknowledged as an
important issue for environmental management, monitoring
effects on the biota, in addition to measuring chemical
contaminants, would provide important information on the
environmental risks and the effectiveness of environmental
protection.

CASE STUDY 3

Argentina: The soybean rush and its potential impact on
reptiles

Argentina’s soybean sector emerged in the early 1970s due
to a strong natural comparative advantage over other cereals
production. A significant portion of the pesticides applied to
these crops, mainly from November to March, dissipates into
the environment by drift, runoff, and leaching, and thus affects
wild flora and fauna populations in the surrounding PAs
(Peruzzo et al. 2008).
As a result of the expansion of the agricultural frontier,many

areas where caimans and lizards inhabit, particularly broad
snouted caiman (Caiman latirostris) and tegu lizards (Salvator
merianae), are being exposed to contaminants such as
pesticides. Female caiman build nests near water bodies and
female tegu lizards dig holes under roots adjacent to crops. PAs
located near and/or downstream of agricultural activities
indirectly receive pesticides. Meanwhile, the soybean rush
continues its expansion toward other natural ecosystems
including PAs.
The natural reserve “El Fisco” (Figure 1), located in Santa Fe

Province, Argentina, is a PA free of farming and urban activity
whereC. latirostris and S. merianae eggs were collected as part
of management and research programs performed by the
Yacar�e Project and Iguana Project (ICiVet-UNL-CONICET).
They assessed the effects of pesticides released into the
environment (Siroski et al. 2016) as the period of maximum
pesticide application coincides with the breeding season
(November–March) of these species, which poses a serious
contamination risk for developing embryos and neonates
(Poletta et al. 2011). For example, in ovo and in vivo exposures
of C. latirostris and S. merianae to pesticide mixtures at
environmentally relevant concentrations induced detrimental
effects such as genotoxicity, immunological, enzymatic,
developmental, and metabolic alterations (Poletta et al.
2011; Schaumburg et al. 2012; Siroski et al. 2016). They
also showed detrimental effects on postnatal caiman growth
and lower relative weight (Beldomenico et al. 2007; Poletta
et al. 2011). The alterations found in enzymatic and metabolic
systems mainly at birth and 3 months after hatching were no
longer observed at 12 months old (Poletta et al. 2011),
revealing the relevance of the timing of exposure to pesticides
to these species.
Constant exposure of wild species to low concentrations of

pesticides may not cause acute detectable effects in organisms
but may induce genetic disorders and physiological alterations
and, in the long term, reduce their fitness. Even when direct
pesticide spray over caiman nests is not a common situation,
neighboring cropland habitats receive continuous exposure to
low concentration of pesticides that could have cumulative
deleterious effects on animals. The moment of maximal
pesticide application (November–March) coincides with the
incubation period and hatching of caimans and lizards; thus,
these species suffer repeated pesticide exposures as embryos
and neonates. These reptiles can receive new successive
exposures at 8 to 12 months of age, which coincides with
the extensive fumigations due to the second soybean harvest-
ing (Paruelo et al. 2006).
The reptiles are opportunistic carnivores (caimans) and

omnivores (lizards); the local inhabitants consider them
charismatic species, and they have a strong presence in the
regional economy and culture. Thus, these species could play
the role of flagship species in local ecosystems, whose
viability guarantees the whole system’s conservation. Conse-
quently, conducting studies on the effects of pesticide
exposure in caimans and lizards is of particular interest,
particularly because these and other reptiles face a multitude
of challenges when exposed to chemicals in the environment
and have been poorly studied in ecotoxicology (Hopkins
2000).

CASE STUDY 4

Chile: Black-necked swans and a pulp mill

In 2004, a significant decline in the abundance of the black-
necked swan, Cygnus melancoryphus, occurred in the Cruces
River-Carlos Anwandter Nature Sanctuary located inValdivia,
Chile (Figure 1). This sanctuary is awetland designated in 1981
as a RAMSAR site and considered the main reproductive site
for black-necked swans globally (Schlatter et al. 2002). A pulp
mill was built 15 km upstream of this PA and began operations
4 months before the decline of the swans (Mu~noz-Pedreros
2005). The mortality (and emigration) of the swans concur-
rently with pulp mill operations rapidly became a nationally
prominent environmental conflict in Chile.
The population of black-necked swans decreased from 8000

individuals in April 2004 to approximately 400 individuals in
June 2006. Some 50 swans were found dead during 2004 for
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unknown causes (collisions and shot birds were not considered
in this count); theywere emaciated, with a low content of plant
material in their stomachs and with Fe-specific stained spots in
their liver cells (Jaramillo et al. 2007). The surviving swans
inhabiting the wetland had a body mass reduction of 30%
(n¼ 122), with blood chemistry parameters indicating malnu-
trition (Artacho et al. 2007a). These effects were correlated
with the disappearance of the swans’ primary food source, the
Brazilian seaweed Egeria densa (Jaramillo et al. 2007). The
cause of the seaweed die-off was determined to be Fe
contamination (Pinochet et al. 2004), resulting in emigration
and death of the swans due to malnutrition (Artacho et al.
2007a, 2007b).

The above events challenged the system of environmental
impact assessment in Chile. Leading experts from academia,
government, nongovernment organizations (NGOs), and the
pulpmill industrywere actively involved in resolving this issue,
which clearly affected the environment, economy, and welfare
of the region. In Chile, the denomination of Natural Sanctuary
is among the types of official PAs in the national systems of
PAs. Notably, this sanctuary was the first Chilean RAMSAR
site designated because it was a high abundance-nesting site for
black-necked swans. In 2013, the Chilean National Council
sued the pulp mill and mandated to mitigate the damage
(evoking Environment Law No. 19.300) by creating 5
alleviation steps: assessing the current state of the wetland,
creating an artificial sentinel wetland, constant wetland
monitoring, creation of a wetland research center, and creation
of a community development program (http://www.
humedalriocruces.cl/).

Chilean PAs coverage is nearly 22% of the nation yet the
system is still underrepresented in the most heavily used zone
(Central Chile) and in land-marine transition environments
(Squeo et al. 2012). The land–marine transition environment is
anticipated to have one of the greatest loads of chemical
contamination due to the transport of contaminants in water
from upstream sites and the direct contamination load from
marine activities near the coast. This enhances the need for
improved assessments of chemical contaminant effects on
biodiversity especially regarding PAs attributes.

The swans and pulp mill issue promoted a relevant
discussion about the role of Chilean environmental policies
and regulations (Jaramillo et al. 2007). It also caused an
examination of the performance of institutions in charge of
environmental protection in Chile (Sep�ulveda and Villarroel
2012), which authorized the pulp mill to discharge its effluent
despite uncertainties regarding the potential impacts.

OPPORTUNITIES AND CHALLENGES
Our database review and case studies showed that Latin

American PAs are not protected from either the occurrence or
the deleterious effects of chemical pollution. These effects
have the potential to affect individuals and populations initially
regarded as protected. The bulk of chemical pollution and
contamination cases inside PAs came from mining and
hydrocarbon extraction but not from food production projects
(agriculture or aquaculture). Most of the recent debate about
the effectiveness of conservation strategies is based on
agricultural production. For example, substantial arguments
have been stated about the opposing biodiversity conservation
strategies such as land sharing (integration of conservation and
production) or land sparing (separation of conservation and
production) (Green et al. 2005; Fischer et al. 2014).
Unfortunately, the mobilization of significant levels of
contaminants through the air or carried by water make the
debate about land sharing and land sparing artificial, because
apparently PAs located near the major commodities produc-
tion projects, cities, or intense agricultural areas are not going
to be free of pollution effects. Thus, diminution of pollution
and contamination at the source appear to be the most logical
step to deal with pollution inside PAs.

Despite that this analysis may represent the largest data set
of chemical pollution and contamination cases inside PAs, it is
not comprehensive. It is clear that not all cases of chemical
pollution inside PAs are reported. For example, one of our case
studies (Brazil) was not reported in EJLOT.We expect that in
the near future this databasewill expand sowe can better assess
this issue. In terms of types of ecosystems affected, at least 42 of
the cases of chemical pollution or contamination occurred in
PAs where wetlands were the main protection subject. Others
cases of reported pollution or contamination occurred on
wetlands but were located in PAs where wetlands were not the
main conservation subject.

Our selected case studies, represented sources of con-
taminants categories such as urban or industry infrastructure,
mineral mining, and agriculture or forestry. A common
factor among 3 of the 4 case studies (except for Argentina) is
the fact that chemical contamination issues in the PAs were
focused on metals. Other compounds, such as emerging
contaminants (i.e., perfluoroalkyl substances, pharmaceuti-
cals, and personal care products) were not measured.
Moreover, half of the case studies showed an absence of
pollution effects assessment. In the Chile case study,
mitigation activities have been developed. Nevertheless,
this is an exceptional case due to the high public visibility
given a reduction of approximately equal to 95% of the
charismatic swan population in the PA. Previously, pollution
has been considered in recommendations for mitigation of
acid rain effects in PAs in Europe (Phillips 1994), and work
has been conducted to assess light pollution effects on PAs
(Aubrecht et al. 2010). Pollution is mentioned in reports and
scientific articles related to biodiversity conservation inside
PAs, however, in-depth assessments to understand impacts
on biodiversity were not a major focus of these documents in
Latin America or globally.

Assessment of the relative impact of chemical pollution on
biodiversity is a requisite to better assess the impact of this
issue. For instance, Burkhead (2012) estimated that chemical
pollution accounted for 17% of the fish extinctions in North
America. Nonetheless, there is no estimation of the relative
impact of chemical pollution on biodiversity in LatinAmerican
PAs. Latin American countries with less land area have fewer
PAs, highest human density, and the highest impact on
biodiversity loss (Table 1). These factors increase pressure on
biodiversity and ecosystems and therefore challenge the PAs
idea in protecting natural resources such as freshwater
wetlands, land–marine transitional environments (estuaries
and coastal wetlands), and marine environments. Generally,
chemical pollution is only mentioned and implicitly recog-
nized in PAs when the impact on biodiversity (including
population declines) is clearly evident, as was the case with the
black-necked swans. This reactive approach needs to be
changed to a monitoring approach where fate, transport, and
toxicity of chemical contaminants are considered. Clearly,
there is a pressing need to develop explicit programs to assess
the current extent of chemical pollution in PAs neighboring

http://www.humedalriocruces.cl/
http://www.humedalriocruces.cl/
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large urban areas or areas with agricultural, industrial, and
aquaculture production.
Aquatic environments might be the most threatened

habitats within PAs in Latin America as shown in these case
studies. Because wetlands sustain biodiversity and provide
essential ecosystem services (Zedler and Kercher 2005), they
have become PAs. However, if wetland PAs do not address
explicitly water pollution as a concern by monitoring chemical
contaminant concentrations and effects in the aquatic
environment, one of the most basic ecosystem services (the
provision of clean water) will be lost. Research and monitoring
must go beyond the mere identification of contaminants. They
must predict the impact of chemical pollution at population
and/or ecosystem levels of biological organization for informed
management of PAs.
Chemical contaminants reach PAs from multiple direct and

indirect sources, including water and air. Assessment and,
where necessary, mitigation, will not be easy and will require
much larger efforts than have been undertaken to date. For
example, in the case study from Lake Chapala (Mexico), an
international agreement pursuing environmental cooperation
among Canada, the United States, and Mexico highlighted the
necessity to assess transboundary pollution. This may be
generally necessary for all PAs. Nevertheless, the situation of
the RAMSAR sites reviewed here indicated that international
agreements do not necessarily improve the PAs outcomes
with regard to pollution. Two of the 4 case studies examined
here are RAMSAR sites, a PA denomination based on an
international agreement between contracting parties to protect
wetlands of global importance. Frazier (1999) determined
early on that for RAMSAR sites in the Neotropical ecozone (a
region that essentially included all Latin American countries),
pollution was the most commonly reported factor of change
affecting the ecological character of these wetlands. This
emphasized the vulnerability of aquatic environments due to
chemical pollution and demonstrates that this is a widespread
issue in the region.
The effects of chemical pollution in Latin American PAs

challenge their effectiveness to protect biodiversity and
ecosystems functionality. Public calls for action (e.g., the
black-necked swans in the Chilean case study) resulted in a
reactive management of the problem. However, reactive
management is inadequate and inefficient; by contrast there is a
clear and pressing need for more proactive approaches.
Collaboration among ecotoxicologists and protected area
managers is crucial for understanding contaminants effects
on PAs performance. Specifically, we recommend that for all
PAs that there is an initial assessment of potential sources of
specific chemical contaminants that are not restricted to
metals. This should be followed by site-specific assessment and
monitoring of chemical contaminants of potential concern in
appropriate environmental matrices (water, sediment, tissue)
along with biological effects assessments. Only by collecting
appropriate and necessary information can informed manage-
ment decisions be made to proactively protect the biodiversity
and function of Latin American (and other) PAs.
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